On some elliptic interface problems with nonhomogeneous jump conditions
نویسندگان
چکیده
منابع مشابه
Immersed-Interface Finite-Element Methods for Elliptic Interface Problems with Nonhomogeneous Jump Conditions
In this work, a class of new finite-element methods, called immersed-interface finite-element methods, is developed to solve elliptic interface problems with nonhomogeneous jump conditions. Simple non–body-fitted meshes are used. A single function that satisfies the same nonhomogeneous jump conditions is constructed using a level-set representation of the interface. With such a function, the di...
متن کاملThe Immersed Finite Volume Element Method for Some Interface Problems with Nonhomogeneous Jump Conditions
In this paper, an immersed finite volume element (IFVE) method is developed for solving some interface problems with nonhomogeneous jump conditions. Using the source removal technique of nonhomogeneous jump conditions, the new IFVE method is the finite volume element method applied to the equivalent interface problems with homogeneous jump conditions and have properties of the usual finite volu...
متن کاملImmersed Finite Element Methods for Elliptic Interface Problems with Non-homogeneous Jump Conditions
Abstract. This paper is to develop immersed finite element (IFE) functions for solving second order elliptic boundary value problems with discontinuous coefficients and non-homogeneous jump conditions. These IFE functions can be formed on meshes independent of interface. Numerical examples demonstrate that these IFE functions have the usual approximation capability expected from polynomials emp...
متن کاملOn Symmetric Hyperbolic Boundary Problems with Nonhomogeneous Conservative Boundary Conditions
Symmetric hyperbolic systems with nonhomogeneous conservative boundary conditions are considered. Existence, uniqueness, and regularity are established for the boundary value problem and the initial-boundary value problem. This boundary problem is not strongly well-posed in L2, a loss of derivatives is observed. Minimal regularity assumptions on the coefficients of the operator are made.
متن کاملThe algebraic immersed interface and boundary method for elliptic equations with jump conditions
A new simple fictitious domain method, the algebraic immersed interface and boundary (AIIB) method, is presented for elliptic equations with immersed interface conditions. This method allows jump conditions on immersed interfaces to be discretized with a good accuracy on a compact stencil. Auxiliary unknowns are created at existing grid locations to increase the degrees of freedom of the initia...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Advances in Nonlinear Analysis
سال: 2013
ISSN: 2191-9496,2191-950X
DOI: 10.1515/anona-2013-0005